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Dedication 

For Belinda and in spite of the cat. 
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who gives all his time to the Africas and the poles, with this unsearched marvelous 

world right at his elbow.” – Mark Twain, “The Great Dark”1 
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Abstract 

Staphylococcus pseudintermedius affecting dogs is analogous to S. aureus on humans, 

acting as both normal flora and opportunistic pathogen.  Methicillin resistance in S. 

pseudintermedius is recent, with the first documented occurrence of an isolate bearing 

the methicillin resistance gene, mecA, in 1999.  This gene encodes penicillin binding 

protein 2a, which renders all beta-lactam drugs ineffective and functions as a “gateway” 

antibiotic resistance determinant.  In the presence of ineffective antibiotics, 

opportunities for mutational events and acquisition of mobile genetic elements increase 

as microbial densities increase, often leading to multi-drug resistance.  Methicillin-

resistant S. pseudintermedius (MRSP) infections have become increasingly common.  For 

example, approximately 30% of the S. pseudintermedius isolates tested by the 

University of Tennessee College of Veterinary Medicine Diagnostic Bacteriology service 

are resistant to methicillin.  An increasing number of MRSP isolates are also resistant to 

most clinically useful antibiotics available to veterinarians except for chloramphenicol, 

and resistance to this antibiotic is common among European MRSP isolates.  

Chloramphenicol resistance has begun to appear in the US and if this trend continues 

there may soon be few viable antibiotic treatment options.  

Compared with the arrival of methicillin-resistant S. aureus in the 1960s, the 

opportunity currently exists to apply advanced molecular methods early in this 

recognized emergence of MRSP.  To that end I have pursued projects utilizing multilocus 

sequence typing, pulsed-field electrophoresis, and SCCmec characterization of both 

susceptible and resistant S. pseudintermedius.  The initial result was the detection of a 

clonal population of MRSP in the southeastern United States.  Further characterization 

of this and other clonal lineages using genomic sequencing and real-time RT-PCR 

expression analysis of antibiotic resistance and quorum sensing genes revealed a 

marked difference in the regulation of antibiotic resistance between regional clones.  

These discoveries have interesting epidemiological implications and provide a 

foundation for the development of novel therapeutics to circumvent the expanding 

antibiotic resistance repertoire of MRSP.  Potential targets identified by this work 

include membrane-bound beta-lactamase receptors responsible for the regulation of 

mecA, non-cognate auto-inducing peptides, and synthetic antisense oligonucleotides. 
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Chapter 1: Literature Review 

Overview 

 

A synthetic form of penicillin, methicillin, was introduced in 1959 to treat 

Staphylococcus aureus resistant to beta-lactam antibiotics. Within a year the first 

methicillin-resistant S. aureus (MRSA) isolates began to appear in hospital settings.2 

Methicillin-resistance is a “gateway” antibiotic resistance determinant.  It causes 

penicillins and cephalosporins to become ineffective, establishing a MRSA foothold in 

the hospital environment and on the patient and hospital staff repeatedly exposed to 

first-line antibiotics.  From that foothold, the organism has the opportunity to acquire 

mutations and further transmissible elements that increase its multi-drug resistance 

repertoire.  Methicillin-resistance often leads to multi-drug resistance.  In the fifty years 

since methicillin resistance appeared in S. aureus, MRSA infection has become the sixth-

leading cause of death in hospitalized human patients in the United States, with costs 

estimated to be between 4 and 6 billion dollars annually.2,3  

Staphylococcus pseudintermedius on dogs is analogous to S. aureus on humans, acting 

as both normal flora and opportunistic pathogen.  It is the primary cause of pyoderma, 

the most common dermatologic disease seen in dogs, and is also frequently associated 

with urinary tract infections and wound and surgical site infections.4 The first 

documented isolate of S. pseudintermedius bearing the methicillin resistance gene mecA 

occurred in 1999.5 Since that discovery, methicillin-resistant S. pseudintermedius (MRSP) 

infections have become increasingly common.  Approximately 30% of the staphylococcal 

isolates tested by the University of Tennessee College of Veterinary Medicine (UTCVM) 

Bacteriology Service are resistant to methicillin.6-8 These bacteria also carry resistance to 

almost all clinically useful antibiotics except for chloramphenicol and the ones reserved 

for use in humans. Resistance to chloramphenicol is now beginning to appear, leaving 

no viable therapeutic options.   

Methicillin resistance in S. aureus has been studied in far greater detail than in S. 

pseudintermedius; despite significant dissimilarities in genomic sequence the two 

species share a natural history, as well as many of the same regulatory, antimicrobial, 

and virulence determinants.  Biochemical and molecular techniques used in the study of 

S. aureus can and have often been adapted to S. pseudintermedius.  Therefore, much of 

the literature regarding S. aureus is applicable to the study of staphylococci as a whole.  



www.manaraa.com

 

 2 

The following is a review of the nomenclature, phenotype, genetic characterization of 

methicillin resistance, and typing methodologies for S. pseudintermedius. 

 

The Taxonomic History of Staphylococcus pseudintermedius 

 

The defining characteristics of bacterial species have changed with advances in 

technology.   With the proliferation of molecular characterization techniques and the 

increased accessibility of genomic sequencing platforms, the inevitable taxonomic trend 

is toward diversification within the bacterial genus.  The 19th century Scottish physician 

Alex Ogston was an early proponent of the role of microscopic spherical organisms 

(“micrococci”) in acute inflammation and suppuration associated with abscess 

formation in skin.  He was also one of the first to make the leap connecting microbial 

abscessation with the circulatory phenomena of septicemia and pyemia.9,10 These 

foundational observations hold true in the clinical presentation of staphylococcal 

infection today.  In 1882 he coined the term Staphylococcus – from the Greek staphulê 

for bunch of grapes – to differentiate cluster-forming micrococcus from the chain-

forming variety then known as Billroth’s streptococci.11 Rosenbach further subdivided 

staphylococci in 1884 on the basis of color on culture media – S. aureus and S. albus for 

gold and white colony formation respectively.12 For the next ninety years 

Staphylococcus was widely held to have only three distinct species.  During this period 

gram-positive, coagulase-positive, hemolytic isolates with variable colony coloration and 

associated with disease in both humans and animals were presumed to be S. aureus; 

whereas non-pathogenic, coagulase-negative staphylococci (CoNS) with white colony 

coloration were classified as either S. epidermidis (formerly albus) or S. saprophyticus 

and considered to be environmental contaminates.12-14 

Review of veterinary microbiology textbooks from the 1930s through the late 1960s 

supports the bias towards S. aureus as the catchall designation for pathogenic gram-

positive and coagulase-positive clustering cocci.  Variations in S. aureus microscopic size, 

hemolytic ability, and colony coloration were often noted, prompting calls for greater 

research into the validity of species designation.15-18 From Merchants 1968 edition of 

Veterinary Bacteriology and Virology the follow observation is made concerning the use 

of pigmentation as the sole criteria for staphylococcal differentiation, 
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(S. epidermidis) has been considered by many to be only a non-

pigmented variant of the aureus strains.  It is readily apparent to those 

who study the staphylococci that numerous non-pigmented strains can 

be isolated.  In fact, unless isolation is made upon special media, such as 

no. 110, colonies of staphylococci are sometimes white.  

The designation of strains of any organism, one variety or 

another, on the basis of colony color without specification of growth is 

most confusing, not only to the student but to anyone interested in 

taxonomy.  .  .  . 

It is quite apparent that additional research must be done on the 

genus Micrococcus (Staphylococcus) in order to clarify many of the 

interrelationships of the members of this genus.15 

 

This admonition in a standard veterinary text of the time suggests that as late as the 

early 1970s some veterinary practitioners were dismissing the as yet uncharacterized S. 

intermedius as nonpathogenic based primarily on colony color. 

In the latter half of the 20th century, spurred by the emergence of new hospital-acquired 

and antibiotic-resistant infections, both human and veterinary medical microbiologists 

began to actively pursue a better understanding of which organisms were associated 

with specific types of infections and hosts.  The improvements made in both phenotypic 

biochemical testing and genotypic molecular tests resulted in the diversification of both 

coagulase-positive and negative staphylococcal species.13,16,19 At the time of writing 

there are 41 species and 24 subspecies cited in the genus Staphylococcus.20 

The earliest call for a more precise designation for coagulase-positive staphylococci of 

canines came in 1947, with Smith’s observation that not all suspected pathogenic strains 

from canines reacted uniformly in tube, slide and plate agglutination tests; and that 

canine isolates were discernable from those of other animals by cultural characters and 

toxin formation.21 Based upon confirmation of Smith’s work, a 1967 report proposed the 

name S. aureus var. canis and described biochemical and staining differences between 

isolates from different host species.  The study showed that canine isolates consistently 

failed to coagulate human serum, pigmentation lacked the characteristic golden hue, 

and crystal-violet staining, fibrinolysin production, hemolysis type and phage type did 

not consistently match between human and canine isolates.22 A series of cross-reactivity 
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experiments by I. Live of Pennsylvania and V. Hajek of Czechoslovakia further explored 

the coagulase and fibrinolysis disconnect observed when isolates of one background 

were exposed to blood components of the other.  Not only did these findings have 

bearing on speciation, they were an early suggestion that staphylococci of canine origin 

may be more host-adapted than the human equivalent, S. aureus.23-25 In 1976 Hajek 

reported the results of a battery of additional biochemical tests that when applied to 

coagulase-positive staphylococci of animal origin (pigeon, canine, mink, and horse) 

justified a new species name, S. intermedius.  The name was chosen to indicate the 

group’s intermediate phenotypic position between the coagulase-positive S. aureus and 

the white colony formation of S. epidermidis.  Despite evidence of biochemical 

differences between isolates from the different animals within the study, a pigeon 

isolate became the type strain for S. intermedius.16 With the biochemical profile 

established for species identification, reports from the 1980s through 2007 consistently 

demonstrated S. intermedius to be the primary staphylococcal normal flora and 

opportunistic pathogen of canines.26-30  

The improvement of molecular typing methods in the 1980s and 90s provided additional 

tools for the description of bacterial species.  In 2005 Devriese et al. described a novel 

staphylococci based on 16S rRNA gene sequence analysis and confirmed by DNA-DNA 

hybridization its dissimilarity with S. intermedius, S. delphini and S. schleiferi subsp. 

schleiferi type strains.  The name S. pseudintermedius was chosen because the new 

species was difficult to distinguish from S. intermedius with standard phenotypic tests.31 

Because 16S rRNA gene sequence differed so little (>99% homology) among the S. 

intermedius group (SIG includes S. intermedius, S. delphini, and S. pseudintermedius), 

subsequent research expanded phylogenetic analysis with sodA and hsp60 gene 

sequences.  Whereas the Devriese group based its findings on four isolates, one each 

from a cat, dog, horse and parrot, Sasaki et al. analyzed 117 isolates with the S. 

intermedius phenotype and primarily of canine and pigeon origin.  They found that all 

canine isolates (n=78) were S. pseudintermedius and that all pigeon isolates were not.   

The ATCC S. intermedius type strain (acquired from the Hajek 1976 study) clustered only 

with isolates from wild pigeons.  This finding was the first strong indication that the 

newly identified S. pseudintermedius was inherently linked to the canine host.32   

Further evidence for replacing S. intermedius with S. pseudintermedius as the 

opportunistic staphylococcal pathogen of canines was given by Bannoehr et al. in 2007.  

The group created a four-component multilocus sequence typing (MLST) analysis using 

chaperonin 60 (cpn60), phosphate acetyltransferase (pta), elongation factor tu (tuf), and 

accessory gene regulator locus D (agrD) in addition to 16S rRNA.  They tested 105 SIG 
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isolates from various hosts and from ten countries in North America, Europe, and Asia.  

Their findings mirrored those of Sasaki et al. in that all S. pseudintermedius isolates 

identified with this method were found on dogs.33 Based upon these studies the current 

consensus for SIG nomenclature is to categorize as S. pseudintermedius all canine 

isolates that have the S. intermedius phenotype.  Therefore, the following terms and 

abbreviations are a convenient method of classification31,34,35: 

1. S. (pseud)intermedius when isolates previously identified as S. 

intermedius are likely S. pseudintermedius (obtained from a canine host) 

2. MRS(P)I for methicillin-resistant S. (pseud)intermedius (formerly 

classified as MRSI but obtained from a canine host) 

3. MRSP for isolates identified as S. pseudintermedius via methods that 

have appeared in more recent literature. 34,35  

 

The History of Methicillin Resistance in S. pseudintermedius 

 

In studies from the 1980s, all veterinary staphylococcal isolates tested were susceptible 

to methicillin.36,37 The first report of methicillin resistance in S. (pseud)intermedius 

confirmed by PCR detection of mecA occurred in 1999 from a single isolate in a survey of 

25 staphylococcal isolates of canine origin.  In that study, both coagulase-positive and 

negative isolates were screened; but interestingly, all other coagulase-positive 

methicillin-resistant isolates were found to be S. aureus.  This occurred at the University 

of Illinois, and the sample set had been collected from 1995 forward. Several possible 

explanations exist for the detection and/or emergence of a single and novel MRS(P)I at 

this time.  The first is that a confluence of events provided the necessary elements for 

acquisition of the mecA gene by S. (pseud)intermedius: 

1. A high prevalence of MRSA among staphylococci responsible for hospital-

acquired infections (>50%) meant that the raw numbers of mobile 

genetic elements (MGE) bearing mecA were high relative to the past.35 

2. The emergence of CA-MRSA infections not linked to HA-MRSA indicated 

that MGEs had made the intra-species transition from one set of lineages 

to another – mecA and SCCmec was on the move.38 

3. The use of beta-lactam antibiotics and cephalosporins in human and 

animal medicine, as well as in food animal production may have reached 
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a critical mass, facilitating not only the acquisition, but also the 

maintenance of the SCCmec bearing mecA in S. (pseud)intermedius.39,40  

 

While all these elements were certainly in place, another reason for the later arrival of 

methicillin resistance in the S. intermedius literature relative to its arrival in S. aureus 

may simply be due to the sensitivity of speciation and screening methodologies.  The 

Spanish group Piriz et al. reported an apparently novel and large proportion of 

methicillin-resistant isolates in a sampling of S. (pseud)intermedius collected between 

1988 and 1992; however, they did not verify the presence of mecA and found widely 

varying levels of methicillin resistance when adjusting the culture alkalinity for canine 

physiology.41 It is important to consider that the speciation of coagulase-positive 

staphylococci was nebulous prior to the mid-1970s, and that appropriate standards for 

speciation and methicillin resistance determination in staphylococci of animal origin 

continue to evolve through the present.6 When molecularly screening UTCVM isolates 

and samples submitted by collaborators for species identity, the Bacteriology and 

Immunology Services often find S. aureus, S. pseudintermedius, S. intermedius, S. 

delphini and S. schleiferi coagulans phenotypically misidentified. Perhaps S. intermedius 

lineages bearing the mecA gene existed for some time prior to the mid-1990s and were 

misclassified as MRSA or expressed mecA at less detectable levels when tested using S. 

aureus standards. The exact point in time where S. pseudintermedius acquired mecA is 

not vital to present treatment and control of MRSP expansion.  However, historical 

review of the literature provides a foundation and informs upon how mecA might move 

from one organism to another, and from what ecological repositories resistance genes 

like mecA arise.  Understanding the frequency and mode of SCCmec horizontal transfer, 

through in-depth molecular population analysis, enables the identification of clinically 

relevant MRSP lineages and sheds light on the frequency at which novel lineages 

appear.   

 

The Utility of Genotypic Methods for Staphylococcal Population Analysis 

 

Horizontal gene transfer (HGT) incidence is an important part of determining zoonotic 

potential of MRSP.  As yet there is no evidence that SCCmec from canine normal flora S. 

pseudintermedius can transfer to human S. aureus or vice versa.  Interspecies SCCmec 

transfer is likely a rare event in that no research group has yet demonstrated such 

movement experimentally.  However, there is compelling evidence from a 2001 Dutch 
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case report concerning a premature infant treated with potentiated amoxicillin while in 

a neonatal intensive care unit.  Prior to antibiotic therapy a mecA negative MSSA was 

cultured.  Following antibiotic treatment failure ten days later, a MRSA was isolated with 

the same genetic background as the previously identified MSSA, as well as CoNS with an 

identical SCCmec to that of the MRSA.42 The neonatal intensive care unit had strict 

infection control procedures in place, and cultured at all stages of treatment.  One 

plausible explanation for the appearance of this novel MRSA was that the SCCmec 

transferred from CoNS to MSSA and the antibiotic given insured selection of the newly 

formed MRSA. 

Investigations of MRSA genotype in large populations are essentially attempting to 

replicate the findings on the Dutch baby at the regional or national level.  Understanding 

the movement of SCCmec requires that researchers adopt a consistent typing scheme.  

Prior to the molecular age, tools for bacterial characterization included phenotypic 

speciation, antibiogram profile, and phage typing.   Over the past two decades 

methodologies have been developed that allow investigators to apply numerical values 

to genetic relatedness within a species.  Molecular techniques have also been 

developed that describe the relatedness of resistance cassettes SCCmec. The following is 

a summary of genotypic methods applied to staphylococci.  These are some of the 

approaches that can demonstrate associations between bacterial lineages and 

resistance determinanants.  

 

Staphylococcal Cassette Chromosome (SCCmec) Typing 

 

Known SCCmecs are relatively large for MGEs, ranging in size from 30 to 55KB.  The 

essential components used to characterize SCCmec are the genetic sequences of the 

mec and ccr gene complexes.  The mec operon is composed of mecA, a promoter region, 

and some or all of the regulatory genes mecI (promoter inhibitor) and mecR1 

(membrane-bound -lactam sensor). The ccr gene complex encodes the recombinases 

responsible for cassette excision from and integration into the bacterial chromosome.43 

To date sequence analysis has identified five classes of mec complex (A, B, C1, C2, and E 

based upon the completeness of the operon) and five ccr allotypes (ccrAB1 to ccrAB4 

and ccrC) in major MRSA lineages.  SCCmec type is designated by a roman numeral (I-

VIII) and represents a combination of mec class and ccr allotype.44 Because the cassettes 

are so large, extensive sequencing would be required to fully characterize each one.  To 
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bypass this laborious process, numerous multiplex PCR schemes have been described, 

amplifying sequences specific to each mec and ccr region by SCCmec type.  The inherent 

drawback to these PCR-based techniques is that any novel cassette type is either 

misclassified because the small regions amplified by the assay are by chance similar to 

the described cassette type, or it is untypeable and must be fully sequenced and a new 

multiplex approach developed.  Low frequency untypeable cassettes are often reported 

in large surveys of methicillin-resistant staphylococci.  The greatest utility of the 

cassette-typing multiplex PCR approaches are their ability to identify the most common 

SCCmecs in the predominant MRSA clonal lineages.  As will be discussed in proceeding 

studies, the multiplex PCR developed by Zhang et al. for MRSA is sufficient to classify 

MRSP SCCmec types II-III and VT in predominant clonal lineages ST 71 and ST 68 

respectively.45,46 

The MRSA SCCmec typing nomenclature has been used for characterization of SCCmec 

in other staphylococci.  Cassettes are likely similar across species; SCCmec is a MGE 

believed to be restricted to staphylococci, and similar cassette types would presumably 

be interchangeable between S. aureus, S. pseudintermedius and the CoNS.  Three 

cassettes associated with S. pseudintermedius have been fully characterized.47,45 

Descloux et al. described two cassettes.  SCCmec type II-III was identified in 14 of 15 

MRSP isolates screened, and SCCmec type VII in a single isolate.  SCCmec II-III was found 

to be a hybrid of S. aureus SCCmec III and S. epidermidis SCCmec II, and associated with 

the most common European MRSP sequence type, ST 71.  MRSP SCCmec VII had novel 

ccr regions, some similarity to MRSA SCCmec III, but an incomplete mec operon.  The 

“take-home” message from the Descloux study is that even though the emergence of 

methicillin-resistance in S. pseudintermedius is recent, the movement of cassettes 

between staphylococci is not a simple transaction whereby the recipient receives an 

exact copy from the donor.  No MRSP has yet been shown to carry an exact copy of a 

MRSA SCCmec.  Something about the as yet unidentified mechanism of cassette transfer 

between staphylococci causes some level of recombination or deletion.  An alternative 

explanation could be that direct MRSA to MRSP cassette transfer does not occur, and 

the genetic shuffling of the cassettes happens in a reservoir species, such as a 

commensal nonpathogenic CoNS.  

The third known MRSP SCCmec type (type VT associated with ST 68) was sequenced and 

described by Eberlein and Kania at UTCVM, and will be part of the study described in 

chapter two.45  
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Methods for Sub-Typing S. aureus and S. pseudintermedius 

 

Because SCCmec is mobile, cassette typing alone is insufficient to characterize MRS and 

incapable of describing susceptible lineages.  Therefore, typing methods have been 

developed that focus on areas of genetic variability shared by all isolates.  Depending 

upon the desired resolution of the bacterial population picture, the following strategies 

have been used to type staphylococcal isolates (listed in order from highest to lowest 

specificity): pulsed-field gel electrophoresis (PFGE), multiple-locus variable-number 

tandem-repeat analysis (MLVA), spa typing, and multilocus sequence typing (MLST).48 

 

Pulsed-Field Gel Electrophoresis 

 

PFGE is among the most discriminative of the typing methods, and is the foundation of 

the Center for Disease Control (CDC) Pulsenet initiative for standardized molecular 

subtyping of foodborne disease-causing bacteria such Escherichia coli O157:H7, 

Salmonella, Shigella, Listeria, or Campylobacter.49 No PCR amplification is required.  

Chromosomal DNA is isolated and then digested with a restriction enzyme; for 

staphylococci the enzyme most often used is SmaI.  Depending upon the number and 

location of restriction sites within the genome, a characteristic number of fragments are 

produced.  Those fragments range from >100KB to <5KB and are separated on agarose 

gel by alternating voltage across an electric field.  The gel banding patterns are then 

assessed by statistical software and assigned a percent similarity relative to one 

another.50 Because the frequency of point mutations that can add or delete restriction 

sites is high, pulsed-field patterns change relatively quickly through successive bacterial 

generations.   PFGE is most useful when comparing isolates within a close population, 

such as within a single hospital or between a series of patients.  The primary 

impediment to wide scale use of PFGE is difficulty with reproducibility between 

laboratories.  It is a labor-intensive process, and the banding patterns vary greatly 

depending upon the agarose gel, power supply settings, and analysis software used.   

Attempts to standardize PFGE for S. aureus have occurred at the federal level in the 

United States and Europe, with its addition to Pulsenet by the CDC and the European 

Union Harmony protocol respectively.51,52 No such attempt has been made to 

standardize S. pseudintermedius PFGE.  Researchers of animal staphylococci typically 

use PFGE to add validity to the results of less discriminating typing methodologies (MLST 
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or spa typing)45,46,53, or to track closely related isolates in carriage studies between 

animals or on different locations of a single animal.54,55 

 

Multilocus Variable Number Tandem Repeat Analysis (MLVA) and spa Typing 

 

MLVA and spa typing fall between PFGE and MLST in their discriminatory ability, and are 

therefore used where appropriate for study focus, sample size and cost-effectiveness.  

Like MLST, both are PCR-based techniques that have the advantage of being highly 

reproducible between facilities.  MLVA is a multiplex PCR analyzing the variation in 

number of repeats in seven individual S. aureus genes (sspA, spa, sdrC, sdrD, sdrE, clfA, 

and clfB).56 In several MRSA studies MLVA was found to be comparable in discriminatory 

power with PFGE.48,57 Due to reduced need for expensive single-purpose equipment and 

specialized training, MLVA may eventually replace PFGE as the method of choice for CDC 

Pulsnet.58-60 Unlike PFGE however, MLVA requires an extensive genus and species-

specific survey and validation of candidate genes with tandem repeat regions exhibiting 

appropriate levels of variability.  To date MLVA has not been developed for sub-typing 

of S. pseudintermedius. 

spa typing is an older single locus technique and subset of MLVA developed by Frenay et 

al.; the sequence variation in a highly polymorphic region of the S. aureus protein A is 

measured and typed, and statistical software determines relatedness between 

isolates.61 Its primary advantage is that only one PCR and sequencing reaction are 

required to characterize each isolate.  The polymorphic region is classified by number of 

24bp repeats and point mutations.  Some hospitals use spa typing as their high 

throughput baseline MRSA typing modality, monitoring for unusual homogeneous 

spikes in spa types that might require PFGE or MLVA for finer characterization. Among 

its disadvantages include this need for verification by other methods, and the potential 

for mischaracterization of an isolate due to a recombination event that includes spa.62 

Within the last two years the spa locus has been characterized for S. pseudintermedius 

and used in conjunction with PFGE53 and MLST46 to illustrate clonality in large regional 

samples of MRSP.  This technique appears promising as a tool to gather information on 

sample sizes in the hundreds or thousands, and could be invaluable for an as yet 

unperformed comprehensive survey of MSSP and MSRP on a national scale. 
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Multilocus Sequence Typing 

 

The resolution provided by PFGE is more in step with the parsing of small differences 

between isolates.  On the other end of the sub-typing spectrum, for measurement of 

bacterial genomic variation through time and over great distances, MLST is the method 

of choice.63,64 MLST for S. aureus requires seven individual PCRs (400-500bp) and 

sequence analyses in the housekeeping genes: carbamate kinase (arcC), shikimate 

dehydrogenase (aroE), glycerol kinase (glp), guanylate kinase (gmk), phosphate 

acetyltransferase (pta), triosephosphate isomerase (tpi), and acetyl coenzyme A 

acetyltransferase (yqiL).65 S. aureus allelic profiles and STs are assigned by comparing 

sequence data for each locus to the MLST repository at http://saureus.mlst.net/.  

Variations between loci in different isolates are designated as numbered alleles.  A 

distinct sequence type is made up of a unique combination of arbitrarily numbered 

alleles, e.g. MRSA ST5 has the assigned allelic profile 1-4-1-4-12-1-10.  

Essentialness of gene function is the primary selection criteria for MLST loci.  All isolates 

of a species must have all loci.  The loci should be areas of genes that are not prone to 

recombination, and should exhibit an average rate of point mutation through time.  The 

Feil et al. phylogenetic analysis of MLST showed that S. aureus alleles are at least 15-fold 

more likely to change by point mutation than by recombination; indicating 

recombination at these sites is rare, that they are stable enough to maintain function, 

but not too conserved either.63 Sequence differences between isolates at just one locus 

indicate a closer phylogenetic relationship than isolates sharing three or fewer alleles. 

eBURST analysis is a graphical representation alleles shared between sequence types. 

The four loci MLST developed for SIG by Bannoehr et. al has been described previously 

in this review.  Of the seven gene loci used in the standard S. aureus MLST, only the pta 

locus is shared between the two methods.33 S. pseudintermedius MLST has proven 

valuable in the examination of isolates collected over large geographic areas and 

through many bacterial generations, enabling broader associations than can be made 

with other methods.  In the proceeding studies MLST will be the primary tool used for 

the characterization of the emergence of MRSP in the southeastern United States. 

 

 

http://saureus.mlst.net/
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Quorum-sensing in S. pseudintermedius 

 

As one of the gene loci examined for sequence typing, the accessory gene regulator 

(agr) quorum-sensing locus D serves a dual purpose as both a molecular target and a 

phenotypic driver of species selection in a mixed species environment.  The agrD locus 

encodes auto-inducing peptides (AIP) capable of modulating virulence under stress and 

in the presence of competing bacteria.  These peptides are seven to nine amino acids in 

length, and are constitutively expressed and deposited into the surrounding 

environment.  Once a threshold density of AIP is reached in the immediate bacterial 

environment (wound, biofilm, lysosome, etc.) the expression of RNA III is triggered, and 

a cascade of virulence-enhancing genes is activated.  AIPs of one agr type have been 

shown to inhibit the RNA III expression and virulence of staphylococci with a different 

agr type.   The agr system is thought to have evolved along lines of speciation within the 

genus; the assumption being that dominant AIPs have the ability to inhibit the SOS 

response in other bacteria within the species, genus, and potentially across genus 

boundries.66,67 However, in the case of S. pseudintermedius the four elucidated AIP 

variants are shared with S. delphini, and S. intermedius.  This suggests that the SIG 

shares common quorum-sensing capacity that has been conserved in spite of species 

differentiation with tropism towards fairly distinct ecological niches. 

SIG isolates encode AIPs structurally different than those of S. aureus.  While a majority 

of staphylococcal quorum sensing research has focused on interaction among different 

types of S. aureus AIPs, some evidence exists that S. aureus AIP may also dampen S. 

pseudintermedius virulence expression.66 Little is known about AIP interaction among 

different S. pseudintermedius agr types. Recent evidence suggests that expression of 

methicillin resistance may be triggered by the RNA III-mediated SOS response.68 These 

findings suggest that staphylococcal quorum-sensing cross-reactivity may inhibit the 

signally cascade responsible for the expression of virulence and methicillin resistance.  

 

Summary Statement 

 

At its inception the goal of this doctoral project was to clarify the population genetics of 

MRSP in the United States.  This is largely unexplored territory.  Prior to this work MLST 

had been performed on only five methicillin resistant isolates from the United States as 
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part of the broader SIG multi-country analysis33, but no in-depth analysis of a specific 

referral center population had yet been undertaken.  To that end a molecular 

characterization scheme focusing on both the whole genome and the mecA cassette 

was implemented as the foundational study for this project.  Methicillin-resistant and 

susceptible isolates from the UTCVM collection were analyzed using mecA cassette 

sequencing and typing, PFGE, and MLST.  Our key findings (Chapter 2) are that the 

spread of methicillin-resistance within S. pseudintermedius is clonal (vertical), and that 

the southeastern US clone bears a cassette type similar to that of a Taiwanese MRSA 

lineage and wholly different than that of the European clonal MRSP. 

The next step was to capitalize on this population genetic information.  By segregating 

isolates according to clonal lineage, applying an external stimulus, and analyzing mecA 

expression as a response variable, the effect of genotype was correlated with antibiotic 

resistance behavior.  Our external stimuli (Chapter 3) include oxacillin over different 

lengths of time and different concentrations, as well as quorum-sensing AIPs. 

The problem as well as the study of methicillin-resistance in S. pseudintermedius is 

relatively new.  Defining the movement and activity of resistance genes and the isolates 

that carry them has both intrinsic and clinical value.  We hypothesize that the expansion 

of MRSP is proceeding in a clonal manner, analogous to the early expansion of MRSA.  

During this nascent phase of expansion there may be as few as two predominant 

regional clones.  The over-arching theme for this work is that once characterized, the 

clonality of methicillin-resistant staphylococcal lineages can be exploited by linking 

genotype with expression characteristics.  Clonality allows the molecular researcher to 

inform the clinician of conserved characteristics.  These discovered characteristics will in 

turn inform decisions on antibiotic therapy choice and infection control strategies.   
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Chapter 2: Identification of a predominant multilocus sequence 
type, pulsed-field gel electrophoresis cluster, and novel 
staphylococcal chromosomal cassette in clinical isolates of 
mecA-containing, methicillin-resistant Staphylococcus 
pseudintermedius 
 

C. C. Blacka, S. M. Solymana, L. C. Eberleina, D. A. Bemisa, A. M. Woronb, S. A. 

Kaniaa 

aDepartment of Comparative Medicine, College of Veterinary Medicine, 

University of Tennessee, Knoxville, TN.   

bTennessee Department of Health, Nashville, TN. 

This chapter is a revised paper co-authored by S.M. Solyman and published in the 

journal Veterinary Microbiology, appearing in November 2009, volume 139. 

My primary contributions to this paper include: (i) assisting with experiment design and 

isolate selection, (ii) development of the pulsed-field gel electrophoresis protocol and 

processing of S. pseudintermedius samples, (iii) most of the gathering and reviewing of 

literature, (iv) analysis of data and formulation of discussion topics, (v) pulling various 

contributions into a single paper, (vi) most of the writing. 

 

Abstract 

 

Methicillin resistance encoded by the mecA gene is increasingly observed in 

Staphylococcus pseudintermedius. Little is known about the population genetics of 

veterinary staphylococci bearing methicillin resistance. The aim of this study was to 

determine the relatedness of resistant bacteria and to compare them with methicillin-

susceptible isolates. Multilocus sequence typing (MLST) and pulsed-field gel 

electrophoresis (PFGE) fragment profiling were performed on methicillin-resistant S. 

pseudintermedius (MRSP) and methicillin-susceptible S. pseudintermedius (MSSP) 

isolates obtained from canine samples submitted to the veterinary teaching hospital 

bacteriology service between 2006 and 2008. Multilocus sequence typing detected 20 
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different sequence types, 16 of which were not previously described. Methicillin-

resistant isolates were predominantly ST68, possessed the Staphylococcus aureus-

associated staphylococcal chromosomal cassette mec (SCCmec) type VT and fell within 

the largest PFGE cluster; whereas methicillin-susceptible strains were more genetically 

diverse. This suggests that most methicillin resistance within the population of isolates 

tested originated from a single source, which has persisted and expanded for several 

years. 

 

Introduction 

 

Coagulase-positive hemolytic Staphylococcus species, particularly S. pseudintermedius, 

are associated with clinically important infections in dogs. The prevalence of MRSP in 

dogs is rising. Prior to 1999 reported frequencies of MRSP isolates from dogs were low 

(<5%); in several surveys from the 1980s, all veterinary staphylococcal isolates tested 

were susceptible to methicillin.5,36,37 An increasing number of multidrug-resistant 

isolates from dogs have been associated with MRSP.8,35  

Little is known about the population genetics of MRSP. Epidemic MRSA lineages have 

emerged through horizontal transfer of SCCmec into successful methicillin-susceptible 

lineages. Once established, MRSA clonal complexes typically dominate specific 

geographic regions.69 It is likely that this has occurred with MRSP, and that S. 

pseudintermedius gained SCCmec through horizontal transmission within recent 

history.33 

The purpose of this study was to use standard MLST, PFGE, and SCCmec typing 
techniques to explore relationships among a collection of geographically linked, MRSP 
and MSSP isolates.   

 

Materials and Methods 

 

Bacterial strain selection 
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S. pseudintermedius isolates were obtained from clinical samples submitted to the 

University of Tennessee College of Veterinary Medicine Clinical Bacteriology Laboratory.  

A total of 60 non-duplicate isolates from dogs were arbitrarily selected from nine 

groups, and then were sorted by year of isolation and by presumptive categories of 

relative in vitro susceptibility to oxacillin.  Samples included 20 from 2006, 21 from 2007, 

and 19 from 2008.  Isolates with oxacillin zone diameters equal to or less than 10 mm 

were categorized as high-level-resistant (n=19), isolates with zone diameters from 11 to 

17 mm were categorized as low-level-resistant (n=21) and isolates with zone diameters 

equal to or greater than 18mm were categorized susceptible (n=20).70 Each group 

contained six to eight isolates. Bacterial isolation and identification procedures were 

those routinely used in the laboratory as previously described.8 Isolates phenotypically 

identified as “S. intermedius” were presumed to be S. pseudintermedius.  Species 

identity of S. pseudintermedius was confirmed by partial 16S rRNA and pta gene 

sequencing associated with the MLST process (Bannoehr et al., 2007).  The type strain of 

S. intermedius isolated from a pigeon (ATCC 29663) and S. pseudintermedius (ATCC 

51874, isolated from a dog and originally designated S. intermedius) served as reference 

strains for this study. 

 

DNA isolation 

 

Isolates were grown on blood agar plates overnight at 37°C and bacteria derived from a 

single colony were suspended in 0.5 ml of TE buffer mixed with an equal volume of glass 

beads.  DNA was extracted by cell disruption following pulsed vortexing. 

 

SCCmec typing and characterization 

 

Multiplex PCR designed for characterization of SCCmec types I-V in S. aureus was used 

to characterize all MRSP cassette types.43 A representative ST68 was chosen for full 

cassette sequencing using a primer walking strategy.  Sequences were obtained from 

PCR products at the University of Tennessee Molecular Biology Resource Facility. 

Overlapping contiguous sequences were aligned using DNA analysis software (Lasergene 

Sequence Manager).  PCR primers for the detection of the ccrC2 sequence in SCCmec 
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type VT were used to confirm the similarity of the type V cassettes associated with ST68 

isolates.71 

 

Multilocus Sequence Typing 

 

Oligonucleotide primers specific for tuf, mecA, 16s rRNA, cpn60, pta and agrD genes 

were designed in previous studies.33,72 PCR was performed as previously described.33 

PCR products of expected sizes were treated to destroy single-stranded DNA (ExoSap-IT, 

USB Corp., Cleveland, OH) and submitted to the University of Tennessee Molecular 

Biology Resource Facility for DNA sequencing.  PCR primers were used for direct DNA 

sequencing of PCR amplification products. STs were assigned using the method 

established by Bannoehr et al.  Briefly, this involved matching pta, cpn60, tuf, and agrD 

sequences determined from study isolates with corresponding reference sequences 

available in GenBank.  Designations for each allele correspond to a code used to assign 

ST.  For alleles that were not previously reported, new STs were assigned beginning 

sequentially and following the previous designations. 

 

Pulsed-field Gel Electrophoresis 

 

Pulsed-field gel electrophoresis (PFGE) was performed using the protocol described by 

McDougal et al. with minor modifications.52  Briefly, a single colony from each 

catalogued isolate was grown aerobically on a blood agar plate for 24 hours at 37°C.  

From the plate a cell suspension in saline was made to a reading of 0.50 using the 

MicroScan turbidity meter, (Dade Behring Inc., Deerfield, IL).  Plugs were formed in 

disposable ~ 100 μl molds by mixing equal amounts of cell suspension with 1.2% 

SeaKem Gold agarose (FMC, Rockland, Maine).  Formed plugs where incubated in a 

solution of TE buffer (2.8 ml, 10 mM Tris HCl, 1 mM EDTA *pH 8+), Lysozyme (200 μl, 10 

mg/ml) and Lysostaphin (20 μl, 10 mg/ml) for two hours at 37°C.  The previous solution 

was poured off.  The plugs were then incubated in 5 ml of cell lysis buffer (1M Tris HCL, 

0.5M EDTA, 10% Sarcosyl solution, Sterile Type 1 water) and 10U proteinase K at 54°C 

for two hours in a shaking water bath.  Plugs were washed twice with Type 1 water for 5 

minutes and four times with TE buffer for 15 minutes each. All washes took place in the 

54°C shaking water bath.  Plugs were cut in half and digested using 2 μl BSA, 20 μl of 
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buffer 4 New England BioLabs (NEB, Ipswich, MA), 40U SmaI (NEB) and 176 μl of Type 1 

water per section. Digestion was achieved over a minimum of two hours in a 25°C water 

bath. Restriction fragments were separated by PFGE using a CHEF Mapper (Bio-Rad 

Laboratories, Hercules, CA). Running conditions consisted of 6.0 V/cm, optimized for 

separation of 30 kb low molecular weight to 600 kb high molecular weight fragments, 

and 40 second initial switch time and 45 second final switch time for 18 hours. Isolates 

unable to elicit a distinct band pattern with SmaI were restricted with ApaI using the 

same protocol. 

Gels were stained with ethidium bromide, destained in deionized water and the images 

were digitally captured using a GelDoc 2000 UV transilluminator and Quantity One 

software (Bio-Rad Laboratories, Hercules, CA).  The Salmonella Braenderup H9812 

global standard was used for gel normalization using BioNumerics software (Applied 

Maths, Sint-Martens-Latem, Belgium) and banding patterns were compared in the 

normalized view using PulseNet E. coli scripts.  PFGE DNA fingerprint types were 

assigned using the Tenover criteria.73 

 

Results 
 

SCCmec typing and characterization 

 

Identical mecA gene sequences were obtained from all methicillin-resistant strains, 

matching S. pseudintermedius (accession no. AM 904732) and S. aureus (accession no. 

EU 790490).   Thirty-seven of 38 MRSP SCCmec types characterized via multiplex PCR43 

corresponded with S. aureus type V.  Thirty-seven of 38 MRSP SCCmec types 

characterized via ccrC2 PCR71 corresponded with S. aureus SCCmec type VT.  A single 

MRSP isolate was untypeable by either method. 

Sequence of a representative type V S. pseudintermedius cassette (GenBank accession 

no. FJ544922.1) was homologous, with the exception of one deleted section of a gene, 

to SCCmec type VT (accession no. AB462393) first described in a community-associated 

methicillin-resistant S. aureus (CA-MRSA) from Taiwan.74 
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Multilocus Sequence Typing 

 

A total of 600 fragment sequences including forward and reverse reactions, 

representing five genes (16S rRNA, pta, tuf, cpn60 and agrD) from 60 strains, were 

analyzed. 16S rRNA gene sequences were identical among all isolates in this study and 

matched those reported for S. pseudintermedius (accession no. EU157264).  

Thirty-seven of 38 methicillin-resistant isolates belonged to ST68, while a single 

methicillin-resistant isolate, from 2007 and phenotypically classified as low-level 

resistant, had a novel ST pattern (TABLE 2).  No apparent association was found 

between oxacillin disk zone diameter for methicillin-resistant isolates and ST.  Fifteen of 

the novel sequence types were detected among 19 of the 22 methicillin-susceptible 

strains examined. 

The pta sequences examined had five different alleles (TABLE 1). The sequences of four 

alleles were identical to S. pseudintermedius pta sequences previously reported.33 A 

novel pta sequence, representing a fifth allele, with a single nucleotide difference, was 

identified (accession no. FJ170820).  

Eight variable sites were detected in cpn60 sequences and were identical to those 

reported previously.33 A novel cpn60 sequence was found in the same isolate that 

contained a novel pta sequence (accession no. FJ170819).  

One variable site occurred in tuf sequences with two alleles. These sequences were 

identical to S. pseudintermedius sequences reported previously.33 

agrD sequencing revealed the presence of the four previously described alleles and 

known agrD (auto-inducing peptide) types.33 MRSP ST68 was type IV; as were eight of  

the MSSP isolates.  Type ІІІ was found in six of 20 MSSP isolates, as well as in the novel 

MRSP ST105.  Type II was found in seven of 20 MSSP isolates.  Type I was found in only 

one novel susceptible strain.  

 

Pulsed-field Gel Electrophoresis 

 

A dendrogram of percent similarity, calculated with Dice coefficients revealed a single 

major cluster of methicillin-resistant isolates containing all 37 that were ST 68 (FIGURE 
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1).  Within the pulsed-field cluster that contained ST 68, 22 subtypes were identified 

with 79.7% similarity.  Three ST68 isolates, representing two subtypes, were positioned 

outside the 80% cutoff for close relatedness by the Tenover criteria.73 

 

The single MRSP isolate with the novel sequence type ST105, and containing an SCCmec 

type other than MRSA SCCmec type VT, exhibited a pulsed-field pattern unrelated to any 

other isolates tested. 

All methicillin-susceptible isolates exhibited unique pulsed-field patterns.  Three 

susceptible groups were closely related – one group with three isolates, two groups with 

two isolates each.  All isolates within >80% similarity groupings, other than the group 

containing all ST68 isolates, had distinct sequence types.  

 

Discussion 

 

MLST and PFGE are both highly discriminatory methods for characterizing bacterial 

isolates.52,65 In contrast to single locus classification systems, whole genome or 

multilocus identification methods provide more clarity concerning bacterial relatedness 

and can be applied to both susceptible and resistant strains.  MLST was used in a multi-

country survey to determine the population genetic structure of S. pseudintermedius; 

however, in that study only five methicillin-resistant samples from the United States 

were included.33 Other recent surveys using PFGE have demonstrated relatedness 

amongst MRSP isolates in small sample sizes from specific geographic regions.53,75  

 Results from our study add strength to the horizontal transmission and geographic 

clonal dissemination model of methicillin-resistant staphylococci.69 Our most notable 

finding is that 37 of 38 methicillin-resistant isolates in this regional sampling were of a 

single sequence type, ST68, and demonstrated relatedness in pulsed-field type.  This 

finding parallels the Bannoehr European sample wherein seven methicillin-resistant 

isolates from dogs with clinical infections in Germany and Sweden were also from a 

single clone, ST71, while a single canine commensal isolate from Sweden was of a 

different clonal group, ST69.33 

The 37 ST68 isolates appeared to carry a type V cassette when tested with the S. aureus 

multiplex PCR typing described by Zhang et al., but DNA sequencing of the cassette 
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TABLE 2.1. Allelic profiles and agrD types of novel S. pseudintermedius sequence types (ST) isolated from dogs compared to the predominant MRSP 

ST68. 
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TABLE 2.2. Nucleotide sequence variations and alleles in five housekeeping genes and mecA of S. 

pseudintermedius. 
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FIGURE 2.1. Dendrogram based on pulsed-field gel electrophoresis analysis of 60 S. pseudintermedius. 

Shaded rows represent isolate groupings that are methicillin-resistant and contain the mecA gene. 
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revealed that it was a truncated version of SCCmec type VT.74 This cassette was first 

reported in a successful multidrug-resistant CA-MRSA lineage from Taiwan, and has 

recently been reclassified as SCCmec type VII.71 SCCmec types II, III and V were 

previously described in S. pseudintermedius using multiplex PCR procedures used in the 

present study, and the complete cassette sequence from two isolates that were 

characterized as having type III cassettes by the multiplex PCR method revealed a new 

hybrid sequence that has been called type II-III.47 The SCCmec cassette associated with 

the ST105 isolate has not yet been characterized, as this cassette is untypeable using the 

methods employed for this study.  However, the presence of mecA in ST105 has been 

confirmed using PCR, and the ST105-associated cassette has been differentiated from 

the ST 68-associated cassette by applying primers used for type V sequencing.  The 

circumstances and mechanism by which the ST68 S. pseudintermedius lineage in the 

present study acquired a cassette associated with a disease-causing human S. aureus 

lineage are unknown.  The finding implies, however, that inter-species transfer of 

antibiotic resistance between human and canine pathogens may have occurred. 

A single methicillin-resistant isolate with a different and novel ST and pulsed-field type 

was found – ST105.  Only five MRSP sequence types have been described – STs 29, 68, 

69, 70 and 71.33 ST 105 differed from ST 68 at three alleles, indicating a distant 

phylogenetic relationship.  This genetic dissimilarity supports the independent 

acquisition of mecA by each lineage.33 Sequence type 105 may represent an emerging 

MRSP lineage, or it may be a transient cassette carrier that will fail to successfully 

compete with the predominant ST68.  Collectively these data indicate that clonal 

expansion, regional selection and maintenance of the more successful clone have 

occurred. 

Only three previously reported MSSP sequence types, STs 15, 17 and 19, were identified 

from one isolate each.  Sixteen novel sequence types were identified among clinical 

isolates of S. pseudintermedius from dogs; all but one were from methicillin-susceptible 

isolates.  Among methicillin-susceptible strains in our study 19 of 22 (86%) belonged to 

novel STs and all had distinct pulsed-field patterns.  This broad range of clonal diversity 

amongst MSSP contrasts with the limited number of MRSP lineages seen in the United 

States and Europe, where ST68 and ST71 predominate respectively.33 

It is not known if the apparent tendency of antibiotic resistance cassettes to remain in 

so few lineages is due to the rarity and relative difficulty of cassette transfer, or is a 

function of the ability of an MSSP lineage to successfully incorporate the mobile genetic 
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element into its genome. Based upon the variety of MSSP isolates observed, this 

question warrants further investigation.   

In this study, we report an association between ST 68, PFGE type and SCCmec type VT in 

contemporary clinical isolates of S. pseudintermedius from dogs in the southeastern 

United States.  The known genetic diversity among canine isolates of S. 

pseudintermedius was increased by the discovery of 16 novel sequence types and a 

strain that contained novel sequences for both pta and cpn60 genes.  Regional, national 

and global sharing of molecular surveillance data generated for MRSP strains through 

the use of techniques such as single and multi-locus gene sequencing and PFGE will help 

determine the epidemiological significance and patterns of spread for these newly 

emerging strains.  
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Chapter 3: Variation in mecA expression among regional clones 
of methicillin-resistant Staphylococcus pseudintermedius and 
characterization of mecA and blaZ regulatory elements. 
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aDepartment of Comparative Medicine, College of Veterinary Medicine, 

University of Tennessee, Knoxville, TN.   

This chapter is a manuscript that will be submitted to an appropriate journal in summer 

2010. 

My contributions to this paper include: (i) experiment design and isolate selection, (ii) 

preliminary PCR and RT-PCR expression data collection, (iii) the gathering and reviewing 

of literature, (iv) sample processing, (v) analysis of data and formulation of discussion 

topics, (v) all of the writing except statistical analysis in the Materials and Methods 

section. 

 

Abstract 

 

Regional clones of methicillin-resistant Staphylococcus pseudintermedius (MRSP) 

affecting veterinary clinical practice have recently been identified in Europe and North 

America – multilocus sequence types (MLST) 71 and 68 respectively.  One notable 

difference between the two clones is a deletion in the mecI/mecR1 regulatory apparatus 

of the staphylococcal chromosome cassette (SCCmec) carried by ST68.  This deletion in 

analogous methicillin-resistant Staphylococcus aureus (MRSA) results in more 

responsive and greater expression of the mecA encoded penicillin-binding protein 2a, a 

characteristic associated with community-acquired MRSA lineages.  The aim of this 

study was to characterize mec and bla regulatory apparatuses in MRSP.  Seventeen wild-

type S. pseudintermedius isolates representing nine methicillin-resistant lineages were 

screened via PCR for the presence of the repressors blaI and mecI and sensors blaR1 and 

mecR1.  The bla and mec operons for each isolate were sequenced and compared for 

homology between the repressor open-reading frames (ORF), sensor ORFs, and mecA 
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promoter regions.  A real-time reverse transcriptase PCR expression assay was 

developed, validated and applied to nine isolates determining the effect of low-level 

oxacillin induction and quorum-sensing reporter RNAIII on mecA transcript production.  

Comparisons of the induction of mecA expression were made between isolates with a 

full regulatory complement (mecI/mecR1 and blaI/blaR1) and those with truncated 

and/or absent regulatory elements. 

 

Introduction 

 

Staphylococcus pseudintermedius on dogs is analogous to S. aureus on humans, acting 

as both normal flora and opportunistic pathogen.  It is the primary cause of pyoderma, 

the most common dermatologic disease seen in dogs, and is also frequently associated 

with wound, urinary tract and surgical site infections.4 The first finding of S. 

pseudintermedius bearing the mecA methicillin resistance gene occurred in 1999.5 In the 

decade since its discovery, methicillin-resistant S. pseudintermedius (MRSP) has become 

increasingly common, reaching prevalence as high as 30% in studies of referral center 

isolates.6,35,76  

Recent multilocus sequence typing (MLST) studies have established geographic clonal 

emergence of two MRSP lineages.33,45,77,46 Sequence type 71 predominates in Europe, 

bears the hybrid resistance cassette SCCmec II-III, and has acquired resistance to all 

clinically useful veterinary antimicrobial drugs expect lincosamides.77,47 Whereas ST68 is 

the most common MRSP sequence type in the United States and Canada, bears SCCmec 

VT, and has acquired resistance to all clinically useful veterinary antimicrobial drugs 

except chloramphenicol.45,77   

As is the case with MRSA, methicillin resistance in S. pseudintermedius results most 

commonly from the acquisition of the mecA gene encoding penicillin-binding protein 2a 

(PBP2a).  PBP2a contains an altered beta-lactam binding site, preventing antibiotics of 

that class from disrupting gram-positive cell wall metabolism.  In addition to synthetic 

beta-lactam resistance mediated by mecA, all isolates characterized as ST68 and ST71 

have thus far also demonstrated penicillin resistance through blaZ-encoded beta-

lactamase.33,45,77,46 

The controlling mechanisms for bla and mec systems are different from other bacterial 

signal transduction pathways in that they lack a kinase-based system for signal 
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transduction.78 Instead they are modulated by two-component systems consisting of the 

analogous repressors mecI and blaI and sensors mecR1 and blaR1 respectively.   BlaR1 

and MecR1 represent transmembrane spanning and signal transducing proteins.  

Acylation of BlaR1/MecR1 subsequent to external interaction with beta-lactam 

antibiotics is followed by their autoproteolytic cleavage on the cytoplasmic side of the 

cell membrane.   This separated intracellular portion of BlaR1/MecR1 travels to the 

bacterial chromosome and removes its cognate repressor BlaI/MecI via proteolysis.  

Once the repressor dissociates from its promoter-region binding site, transcription of 

the blaZ/blaR1/blaI and mecA/mecR1/mecI genes begins.   The structure and function of 

MecI and BlaI are similar but not identical; they share approximately 60 percent 

sequence homology.79,80 The repressors can act interchangeably, binding to the 

promoter-operator region of either the blaZ or mecA operon.  However, mecA induction 

occurs only through the cognate sensor; the intracellular peptidase portion of 

transmembrane BlaR1 only has activity on BlaI, and MecR1 only cleaves MecI.81   

The mec promoter region consists of  ~100 nucleotides situated between the mecA and 

mecR1 open reading frames.  The mec operator is a subset of the promoter region and is 

a 30 bp palindrome covering mecA -10 and mecR1 -35 promoter sequences.  Within the 

palindrome lies two 4 bp inverted repeats (TACA/TGTA) that serve as binding motifs for 

the repressors MecI and BlaI.79,82 Others have shown that mutations within this 

operator region can affect the ability of the repressors to bind appropriately, and 

thereby account for differences in mecA expression.83  

In MRSA it has been demonstrated that mecI/mecR1 and blaI/blarR1 configuration has a 

significant impact on the speed and character of mecA induction.  While a majority of 

epidemic strains are blaZ positive with functional blaI/blaR1 elements, many have 

deletions of mecI and varying levels of truncation in mecR1; the completeness of the 

mecA operon has become a defining characteristic of MRSA SCCmec type.  Clinical MRSA 

isolates as well as transformed laboratory strains with only mecI/mecR1 induced mecA 

expression more slowly than those with complete blaI/blaR1 and without functional 

mecI/mecR1.  Those isolates with both regulatory apparatuses, with both MecI and BlaI 

available for promoter binding, appear to be even more tightly controlled.84,85 

Methicillin resistant staphylococcal isolates cured of their SCCmec have improved 

growth rates relative to their mecA containing counterparts.86 This discovery and the 

presence of some level of bla and mec regulatory apparatus in all successful and widely-

disseminated methicillin-resistant lineages suggests a metabolic cost is associated with 

unregulated expression of mecA.  The exact benefit derived from differing levels of 
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mecA control is unclear.  However, a recent historical examination of antibiotic 

resistance in S. aureus by Chambers and DeLeo demonstrates four waves in MRSA 

evolution beginning with blaZ in response to penicillin therapy, followed by three mecA 

acquisitions with differing levels of mecA control.  The initial Iberian clone and 

subsequent healthcare-associated MRSA lineages bearing SCCmec types II and III have 

functioning mecI and mecR1; whereas more recent community-associated MRSA bear 

cassettes with mecI deletions and rely on blaI/blaR1 to regulate mecA expression.87-89 

In addition to mec-specific regulatory genes, staphylococci also carry the more 

generalized accessory gene regulator (agr) complex, which produces one of four 

potential quorum-sensing auto-inducing peptides (AIP) characteristic of its lineage.  The 

peptides are seven to nine amino acids in length, and are constitutively expressed and 

deposited into the surrounding environment by the bacteria.  Once a threshold density 

of AIP is reached, the expression of RNAIII is triggered, and a cascade of potential 

virulence-enhancing genes is activated.66 Recent expression studies with MRSA have 

suggested that mecA may fall under the broader control of agr.68 The agr locus of 

MRS(P)I has been described67, but its relationship to mecA has yet to be investigated. 

The emergence of MRSP is recent relative to that of MRSA and thus far restricted to two 

known geographic clones bearing distinct cassette types.  These SCCmec types differ in 

the mecI/mecR1 regulatory apparatus of mecA, and are analogous with the two types of 

cassette structures found in HA and CA-MRSA.  Here we inventory the 

mecA/mecI/mecR1, blaZ/blaI/blaR1, and mecA promoter region status of both major 

and minor MRSP lineages and apply a real-time RT-PCR mecA expression assay to 

correlate regulatory gene presence or absence with speed and abundance of transcript 

production.   

 

Materials and Methods 

 

Bacterial Isolate Selection and Identification 

 

S. pseudintermedius isolates were obtained from clinical samples submitted to the 

University of Tennessee College of Veterinary Medicine Clinical Bacteriology Laboratory 

as well as from European and North American collaborators through previous clonality 

studies.45,77 A total of 17 non-duplicate isolates from dogs were selected representing 
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nine MLST lineages associated with methicillin resistance as an initial pool to screen for 

blaI/blaR1 and mecI/mecR1 variation.  Bacterial isolation and identification procedures 

were those routinely used in the laboratory as previously described.8 Isolates 

phenotypically identified as ‘‘S. intermedius’’ were presumed to be S. pseudintermedius.  

Multilocus sequence typing provided definitive species identity of S. pseudintermedius 

with partial 16S rRNA and pta gene sequencing. The type strain of S. intermedius 

isolated from a pigeon (ATCC 29663) and S. pseudintermedius (ATCC 51874, isolated 

from a dog and originally designated S. intermedius) served as reference strains for this 

study. 

 

DNA Extraction 

 

Isolates were grown on blood agar plates overnight at 37°C and bacteria derived from a 

single colony were suspended in 0.5 ml of TE buffer mixed with an equal volume of glass 

beads and vortexed for ten minutes.  Supernantant in the centrifuged cell lysate was 

used as template DNA for traditional PCR amplification of mec and bla regulatory genes. 

 

PCR Primers and Conditions 

 

Olignucleotide primers specific for S. pseudintermedius mecA promoter and blaI/blaR1 

were based upon MRSP SCCmec type V cassette (GenBank accession no. FJ544922.1) 

and unpublished ST68 genomic data respectively (TABLE 3.1), and designed using IDT 

SciTools application (Integrated DNA Technologies, Coralville, IA).90 Primers for 

mecI/mecR1 were adapted from Hiramatsu et al.91 Primers for RNAIII were adapted 

from Sung et al.67 Conventional PCR was performed using the following parameters: 95º 

for 90 seconds followed by 35 cycles of 55° for 30 seconds, 68º for 120 seconds, and 94º 

for 30 seconds. 
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TABLE 3.1.  Primers used with conventional PCR. 
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Sequence analysis 

 

PCR products of expected sizes were treated to destroy single-stranded DNA (ExoSap-IT, 

USB Corp., Cleveland, OH) and submitted to the University of Tennessee Molecular 

Biology Resource Facility for DNA sequencing.  PCR primers were used for direct DNA 

sequencing of PCR amplification products.  Open reading frames for blaI, blaR1, mecI, 

mecR1 and mecA promoter were compared between isolates using Lasergene® SeqMan 

Pro software (DNASTAR, Inc., Madison, WI). 

 

MLST and PFGE 

 

Genetic diversity of S. pseudintermedius was determined by MLST of five genes (16S 

rDNA, tuf, cpn60, pta and agrD) and by SmaI-PFGE as previously described.33,45 MLST 

sequences were compared with allele sequences present in the NCBI nucleotide 

database in order to determine the allele number.  Sequence type numbers were 

assigned using the key table for MLST typing of S. intermedius group isolates.  New 

sequence types were assigned by the curator, Vincent Perreten 

(vincent.perreten@vbi.unibe.ch).77 

 

Bacterial Growth and RNA Extraction – Time Point mecA Expression Assay 

 

For each isolate a 5 ml vial of BBL™ Trypticase™ soy broth (TSB, Becton, Dickinson and 

Co., Sparks, MD) was inoculated with a single colony grown on blood agar and then 

incubated overnight at 37°C and 225 rpm.  Fifty microliters of overnight growth was 

used to inoculate four additional 5 ml soy broth vials, which were subsequently 

incubated at 37°C and 225 rpm for four hours.  Oxacillin (Sigma Aldrich, St. Louis , MO) 

was added to a single vial at four, two, and one hours prior to RNA extraction.  The 

oxacillin concentration was 0.01 µg/ml for all induction vials; this concentration was 

chosen because in preliminary testing it represented the minimum amount at which the 

type strain ST68 (06-3228) reproducibly increased mecA expression greater than five-

fold over baseline.  One of the four vials was incubated without oxacillin induction to 

serve as the baseline for mecA expression. 
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Following four hours of growth RNA was extracted using UltraClean™ Microbial RNA 

Isolation Kit (MO BIO Laboratories, Carlsbad, CA).  Contaminating DNA was removed 

using TURBO DNA-free™ DNase (Ambion, Inc., Austin, TX).  The resulting RNA template 

was stored in aliquots suspended in DNase RNase free water at -80.0°C. 

 

Bacterial Growth and RNA Extraction – Oxacillin Curve mecA Expression Assay 

 

For each isolate a 5 ml vial of BBL™ TSB (Becton, Dickinson and Co., Sparks, MD) was 

inoculated with a single colony from growth on blood agar and was then incubated 

overnight at 37°C and 225 rpm.  Fifty microliters of overnight growth was used to 

inoculate seven additional 5 ml soy broth vials, which were incubated at 37°C and 225 

rpm for four hours.  Oxacillin (Sigma Aldrich, St. Louis , MO) was added to six vials in a 

fivefold dilution series at concentrations 0.0016, 0.0080, 0.0400, 0.2000, 1.0000 and 

5.0000 µg/ml.  One of seven vials was incubated without oxacillin induction to serve as a 

mecA expression baseline. 

Following four hours of growth RNA was extracted using UltraClean™ Microbial RNA 

Isolation Kit (MO BIO Laboratories, Carlsbad, CA).  Contaminating DNA was removed 

using TURBO DNA-free™ DNase (Ambion, Inc., Austin, TX).  Resulting RNA template was 

stored in aliquots suspended in DNase RNase free water at -80.0°C. 

 

Realtime RT-PCR – Measurement of mecA Induction and Copy Number 

 

Primers and probes (TABLE 3.2) for target mecA and endogenous control 16S were 

designed using Primer Express® software and constructed as custom TaqMan® Gene 

Expression Assays (Applied Biosystems, Foster City, CA).  Applied Biosystems reagents 

TaqMan® 2X Universal PCR Master Mix and Multiscribe™ Reverse Transcriptase were 

used in a 10 µl one-step RT-PCR protocol in the following amounts per well: 5.00 µl Taq 

polymerase, 2.75 µl water, 1.50 µl template RNA, 0.50 µl primer and probe mix, and 

0.25 µl reverse transcriptase.  Each sample was analyzed in triplicate.  Template RNA 

was diluted either 1 to 100 or 1 to 1000.  All time point or differing oxacillin 

concentration samples for each isolate were analyzed together in one run per isolate on 

a 48-well plate in a StepOne™ Real-Time PCR System (Applied Biosystems, Foster City,  
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mecA

forward 5’-GGCATGAGTAACGAAGAATATAATAAATTAACCG-3’

reverse 5’-TTGAGTTGAACCTGGTGAAGTTGT -3’

probe 5’-CTGCTCAACAAGTTCC-3’

16S

forward 5’-CCCTTGAACTTAGTTGCCATCATTC-3’

reverse 5’-CACCTTCCTCCGGTTTGTCA-3’

probe 5’-CCGGCAGTCAACTTA-3’

mecA  with T7 promoter

forward 5’-TAATACGACTCACTATAGGGGCATGAGTAACGAAGAATATAATAAATTAACCG-3’

reverse 5’-TTGAGTTGAACCTGGTGAAGTTGT-3’

RNAIII

forward 5'-AGTAAGGAAAAAGATTCTAACAAATACTT-3'

reverse 5'-GCAGCAGATATCATTAGCACAATCG-3'

probe 5'-CTGTTTCTGCGATAAGTTT-3'  

TABLE 3.2.  Realtime RT-PCR primers and probes. 
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CA).  Thermocycler parameters were as follows:  48°C for 30 minutes, 95°C for 10 

minutes, 40 cycles: 95°C for 15 seconds and 60°C for 1 minute. 

The mecA mRNA for standard curve analysis was produced by adding a T7 promoter to 

the sequence of the mecA forward primer utilized in the real-time assay (TABLE 3.2).  

This primer coupled with the reverse primer from the real-time assay was applied to 

genomic DNA of 06 3228 under the following thermo-cycling conditions: 95º for 90 

seconds followed by 35 cycles of 55º for 30 seconds, 68º for 120 seconds, and 94º for 30 

seconds.  The resulting T7 mecA DNA template was electrophoresed on an 0.8% agarose 

gel.  The single band 117 bp product was excised and extracted (QIAquick® Gel 

Extraction Kit, Germantown, MD).  Following manufacturer’s recommendations for DNA 

<500 bp in length, 1.0 µg served as template in a 16 hour transcription reaction 

(MEGAscript® T7, Ambion Inc., Austin, TX).  The 97 bp RNA product was treated with 4 U 

TURBO DNase (Ambion Inc., Austin, TX) at 37ºC for 30 min, and filtered to remove all 

non-RNA elements (MEGAclear™, Ambion Inc., Austin, TX).  The copy number per µl was 

calculated using µg/ml measurements from a NanoDrop 3300 fluorospectrometer 

(ThermoScientific Inc., Wilmington, DE).  The transcripts were used to create standard 

curves for absolute quantitation of mecA mRNA transcripts isolated from the samples.  

The numbers of RNA copies were estimated based on the molecular weights of the RNA 

standards and the RNA concentrations.  Ten-fold serial dilutions were prepared, and 

aliquots of each dilution were stored at –80°C and used only once.  

 

The efficiency of the real-time RT-PCR assay to amplify the mecA standard mRNA was 

evaluated with the equation:  Efficiency = [10(–1/slope)] – 1.92 Slope is a value derived from 

the constructed standard curves.   To insure equal amplification efficiency in tested 

isolates, four ten-fold serial dilutions of RNA extracted from wild-type MRSP were tested 

against the standard curve.  The efficiencies were comparable.  Quantitiation of mecA 

copy number was calculated by transforming Ct values to the relative number of RNA 

molecules. The quantity of cDNA for each experimental gene was normalized to the 

quantity of 16S cDNA in each sample as previously described.93 
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Estimation of 16S Endogenous Control Copy Number 

 

Multiple 16S genes appear in the bacterial chromosome of S. aureus, usually ranging 

from six to eight copies.94 To insure that mecA transcript measurement was not 

compromised by significant disparities in 16S copy number between S. 

pseudintermedius sequence types, comparison of 16S DNA relative to that of single copy 

mecA was made using real-time PCR.   

Genomic DNA from one isolate each representing STs 68, 71, 73, and 116 was extracted 

using UltraClean™ Microbial DNA Isolation Kit (Mo Bio Laboratories, Inc., Carlsbad, CA).  

The purified DNA amount was measured and adjusted to equal µg/ml concentrations.  

Real-time PCR was performed as previously described without reverse transcriptase 

using 16S rRNA and mecA primers and probes.  Based upon the assumptions that both 

primer sets are equally efficient (achieved with validation for ∆∆Ct mecA expression 

assay) and that mecA is represented in the genome as a single copy, 16S rRNA Ct values 

arising before that of mecA indicate that multiple 16s genomic copies are present.  Fold 

change calculations can then show 16s copy number relative to that of mecA. 

 

RNAIII Expression in Conjunction with mecA Expression 

 

For each isolate a 5 ml vial of BBL™ TSB (Becton, Dickinson and Co., Sparks, MD) was 

inoculated with a single colony from growth on blood agar and was then incubated 

overnight at 37°C and 225 rpm.  Fifty microliters of overnight growth was used to 

inoculate five additional 5 ml soy broth vials, which were incubated at 37°C and 225 rpm 

for one, three, five, seven, and nine hours.  RNA extraction and realtime RT-PCR was 

performed as previously described using mecA and RNAIII specific primers and probes.  

Each reaction was performed in triplicate with one primer set per well.  ∆∆Ct fold-

change over baseline comparisons were made against the one hour measurement. 
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Statistical Analysis 

 

A mixed model ANOVA (SAS, version 9.2, SAS Institute Inc, Cary, NC) was used to 

estimate the effect of sequence type (68 verses 71) and time on inverse log of mecA 

expression.  Isolate, sequence type and time were modeled as class variables and isolate 

was included as a random factor in the model.  Independent variables sequence type, 

time and the interaction of sequence type and time were evaluated for an effect on the 

dependent variable log of mecA copy number.  A second and similar model was used to 

assess the effect of blaI regulation alone verses functional mecI regulation, time and the 

interaction of blaI and mecI status on the inverse log of mecA copy number.  In the 

second model isolate, gene status (blaI vs. mecI) and time were included as class 

variables.  A multiple range test according to the method of Tukey was used to adjust 

for multiple comparisons in both models.  The fit of the both models to the data was 

evaluated by assessing the degree to which the residuals from the models fit a normal 

distribution using the Shapiro-Wilk test statistic.  An a priori adjusted p-value of < 0.05 

was used to determine statistical significance for all tests. 

 

Results 

 

Screening for mecA, mecI, mecR1, blaZ, blaI, and blaR1 Initial mecA Expression Assay 

 

Twelve isolates representing nine sequence types comprised the initial mec and bla 

regulatory element survey of MRSP isolates (TABLE 3.3).  All were phenotypically 

methicillin resistant and confirmed mecA positive.  All but one isolate (ST73) were 

phenotypically beta-lactamase positive and contained blaZ, blaI and blaR1 elements.  

Sequence types 71 and 73 were the only MRSP backgrounds that screened positive for 

the repressor mecI.  The two ST71 isolates (one European and one North American) 

contained both repressors mecI and blaI.  No American isolates other than NA18 (ST71) 

had a complete mecI sequence. 

The initial twelve isolates chosen for mec and bla regulatory element detection were 

grown with and without 0.01 µg/ml oxacillin for four hours and the relative level of 

mecA transcript production was measured by realtime RT-PCR using the ∆∆Ct method  
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TABLE 3.3.  Isolates used in study – presence/absence of mec and bla elements.  Shaded rows represent isolates that were further characterized by time 

point mecA expression assay. 
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(FIGURE 3.1).  Error bars indicate the standard error of the mean and relative 

quantitation of mecA expression is represented on a log scale.   

Those isolates screening positive for blaI only (represented by North American STs 26, 

68, 69, 105, 116, and 118) increased mecA expression to a greater extent than the ST71s 

containing both mecI and blaI.  Sequence type 73 bearing mecI alone increased mecA 

expression at four hours to a level similar to that of the blaI-only isolates. 

 

Sequence Type Selection for Further Analyses 

 

Based upon the initial mecA expression assay and the presence or absence of mec and 

bla elements, STs 73 and 116 were selected to contrast the regulatory apparatuses of 

the predominant geographic clones ST68 (North America) and ST71 (Europe).  Sequence 

type 73 lacks a bla operon but has a complete mec operon resulting in a -blaI/-blaR1 

+mecI/+mecR1 configuration with regard to mecA expression control.  Whereas ST68 

has +blaI/+blaR1 -mecI/mutmecR1 (absent mecI and mutation/truncation of mecR1) and 

ST71 has both complete repressor/sensor systems in +blaI/+blaR1 +mecI/+mecR1.  

Sequence type 116 was chosen because the original blaI 1 forward and reverse primers 

(TABLE 3.1) were unable to elicit a PCR product.  A region internal to the previous blaI 

target was amplified using blaI 2 forward and reverse primers.  Sequence type 116 blaI 

genomic sequence compared with that of STs 68 and 71 had multiple nucleotide and 

translational dissimilarities (FIGURE 3.2).  Therefore ST116 was classified as 
mutblaI/+blaR1 -mecI/+mecR1 (the mutation designation for blaI is relative to that of STs 

68 and 71). 

Sequence types 73 and 116 contain only one known characterized isolate each.  

However, additional wild-type clinical ST68 (n=3) and ST71 (n=2) isolates were added to 

subsequent analyses to show reproducibility of mecA expression within sequence type 

background.  In total four North American ST68s, three European ST71s, and one each 

of STs 73 and 116 were fully characterized by MLST, PFGE (FIGURE 3.3), mec and bla 

regulatory gene sequencing, and mecA expression analysis at four time points.   
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FIGURE 3.1.  Relative mecA expression measured with and without 0.01 µg/ml oxacillin induction at 4.0 hours growth. 
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FIGURE 3.2.  blaI nucleotide and peptide variation between ST116 and STs 68 and 71. 



www.manaraa.com

 

 42 

 

 

 

FIGURE 3.3.  PFGE of nine MRSP isolates.  EO-50, EO-55, and EO-64 are European ST71 and closely related by the Tenover et al. criteria.  08-1043, 

08-3187, 08-494, and 06-3228 are southeastern US ST68 and closely related by the Tenover et al. criteria.  EO-69 and EO-138 are sequence types 73 
and 116 respectively. 
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mec Sequence Analyses 

 

Promoter sequences for ST68 and ST71 were identical.  There was a mecA promoter 

single bp polymorphism between ST73 and STs 68 and 71 at mecA -10; this was adjacent 

to a mecI/blaI TACA binding motif (solid boxes FIGURE 3.4).  Sequence type 116 differs 

from STs 68 and 71 by a single base pair difference at the mecA ribosomal binding site 

(dashed box FIGURE 3.4). 

Repressor mecI sequence was complete and presumed functional in only STs 71 and 73, 

SCCmec types II-III and VII respectively.47 In the isolates sequenced for this study, there 

was complete homology between ST71 and ST73 in the mecI open reading frame (data 

not shown). 

Sensor mecR1 sequence was similar between STs 71, 73, and 116, sharing 97% 

nucleotide homology.  The significance of the slight dissimilarity is unknown.  However, 

because only mecR1 and not blaR1 can inactivate mecI, mecR1 is presumably a non-

essential remnant in ST116.  mecR1 in ST71 differs from ST73 by a single bp deletion, 

resulting in a frame shift mutation at the C-terminal end of the peptide sequence 

(FIGURE 3.5). 

 

bla Sequence Analyses 

 

As was previously reported in “Sequence type selection for further analyses”, ST116 blaI 

genomic sequence compared with that of STs 68 and 71 had multiple nucleotide and 

translational dissimilarities (FIGURE 3.2).  The sensor blaR1 was 100% homologous 

between STs 68 and 71.  However, peptide composition of BlaR1 between STs 68 and 71 

and ST116 was as different as that observed for peptide composition of BlaI (FIGURE 

3.6). 
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FIGURE 3.4.  mecA promoter region polymorphisms of MRSP sequence types.  blaI/mecI binding motifs   

represented within solid boxes, mecA ribosomal binding site in dashed box. 

 

 

 

 

FIGURE 3.5.  mecR1 peptide dissimilarity between STs 71 and 73. 
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FIGURE 3.6.  blaR1 peptide dissimilarity between ST 116 and STs 71 and 73. 

   



www.manaraa.com

 

 46 

Relative Quantitation of mecA Expression –  ∆∆Ct Method 

 

Each RT-PCR value for the nine isolates below was the result of the analysis of a single 

RNA sample. However, growth experiments with RNA extraction and RT-PCR were 

performed at least twice with each isolate. 

Measurements of mecA mRNA copy number relative to that of the 16S RNA endogenous 

control allowed intra-isolate comparisons at differing time points.  This method was 

useful in illustrating the direction of mecA expression (FIGURE 3.7).   

Sequence type 73, which lacked the blaI repressor, showed a stepwise increase in mecA 

expression over four hours.  Sequence types 68 and 116, each lacking the mecI 

repressor, showed induction immediately at one hour, and then maintained elevated 

mecA expression at two and four hours.  Sequence type 71, which possessed both blaI 

and mecI repressors, did not increase mecA expression at any time point at the 0.01 

µg/ml oxacillin level. 

 

Quantitation of mecA Expression – Standard Curve 

 

Transcript copy number tied to absolute measurements of known mecA mRNA in a 

standard curve make possible inter-isolate comparisons at the different time points 

tested.  In addition to illustrating the direction of mecA expression, the method allows a 

copy production number to be applied to the population of cells producing mecA under 

varying oxacillin exposures (FIGURE 3.8).   

At four hours growth in 5.0 ml TSB with no oxacillin, mecA copy numbers were 5.39 

million to 1.12 million for ST 68s and 71s respectively; though a 4.81 fold difference, this 

was not statistically significant (p = 0.6475).  However, significance in mecA copy 

number disparity between ST68 (+blaI/+blaR1 -mecI/mutmecR1) and ST71 (+blaI/+blaR1 

+mecI/+mecR1) isolates were noted at all subsequent induced time points.  At one hour 

induction, mecA expression was 34.71 million to 0.97 million for ST 68s and 71s 

respectively (~35 times greater mecA expression, p = 0.0114).  At two hours induction, 

mecA expression was 23.76 million to 0.71 million for ST 68s and 71s respectively (~33 

times greater mecA expression, p = 0.0158).  At four hours induction, mecA expression  
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FIGURE 3.7.  Influence of repressor gene presence or absence on relative mecA expression, measured at one, two and four hours of growth following 

exposure to 0.01 µg/ml oxacillin. 
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FIGURE 3.8. Influence of repressor gene presence or absence on absolute mecA expression, measured at one, two and four hours of growth following 

exposure to 0.01 µg/ml oxacillin. 
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was 38.34 million to 0.65 million for ST 68s and 71s respectively (~59 times greater 

mecA expression, p = 0.0046).   

Sequence type 116 (mutblaI/+blaR1 -mecI/+mecR1) produced mecA transcript in 

amounts equivalent to ST71 (105-106) at all time points.  Whereas ST73 (-blaI/-blaR1 

+mecI/+mecR1) while increasing mecA output in a time-dependant manner, maintained 

the tightest control of mecA expression of the isolates tested. 

 

Effect of Increasing Oxacillin Concentration on mecA Expression 

 

One isolate from each sequence type was exposed to increasing amounts of oxacillin to 

determine if and at what level mecA copy number induction occurred (FIGURE 3.9). 

Absolute measurement of mecA copy number revealed a one to two log difference 

between ST68 (06 3228) and ST71 (e 64) at every oxacillin concentration at which both 

isolates grew.  No clear mecA induction level was noted for ST71; mecA copy number or 

expression did not increase with increased oxacillin concentration.  Sequence type 73 

showed no mecA induction until a two-log change in copy number at 1.0 µg/ml oxacillin.  

Sequence type 116 exhibited a dose-dependent mecA copy increase in response to 

increasing oxacillin pressures. 

 

RNAIII Expression in Conjunction with mecA Expression 

 

Measurement of RNAIII at two-hour intervals during log phase growth revealed an 

expected sequential increase in RNAIII as population density within the growth chamber 

intensified.  mecA expression for the ST68 isolate shown (FIGURE 3.10) also increased 

with increasing population density for the first five hours, and then reached a plateau 

with high-level expression that was maintained through hours seven and nine. 

 

Discussion 
 

The pattern of mecA expression observed in this MRSP study in part parallels previous 

reports of how mec and bla regulatory elements contribute to mecA repression in MRSA 
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FIGURE 3.8.  Absolute mecA transcript production over four hours at increasing concentrations of oxacillin. 



www.manaraa.com

 

 51 

 

 

FIGURE 3.10.  Gray columns represent RNAIII expression.  The black dashed line represents mecA 

expression over nine hours.  Error bars for columns and dashed line represent standard error of the 
mean of technical replicates. 
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– BlaI is more permissive at the mecA promoter than MecI.84,85 However, because the 

acquisition of mecA by S. pseudintermedius was recent, relative to that which occurred 

in S. aureus, the identification of prevailing mec regulatory strategies in regional clones 

provides more convincing evidence as to the level of mecA regulation is required for 

successful clonal expansion.  For MRSP it appears that some level of bla regulatory 

control is needed to efficiently express methicillin resistance. 

The exclusively MecR1-controlled system (ST73) was slower than the exclusively BlaR1-

controlled systems (STs 68 and 116) to respond to oxacillin, taking hours to achieve a 

comparable response.  Sequence type 73 also had the lowest level of constitutive mecA 

expression in the absence of oxacillin exposure.   It is difficult to extrapolate these and 

other in vitro assessments (mecA expression, antimicrobial susceptibility tests, etc. 

Kirby-Bauer disc diffusion, MIC) to how infections caused by these isolates will behave in 

the patient.  However, tight control of mecA by MecI-only systems likely puts these 

MRSP and MRSA lineages at a disadvantage in the clinical setting, as induction may not 

be rapid enough to prevent cell death when faced with therapeutic levels of beta-lactam 

antibiotics.81,95 The paucity of successful mec-only controlled methicillin-resistant 

lineages for both S. aureus and S. pseudintermedius suggests that some level of bla 

control in mecA expression is necessary for geographic clonal expansion.   

Despite having similar bla and mec regulatory apparatuses (blaI repression without 

mecI), sequence types 68 and 116 are genetically dissimilar when analyzed by MLST and 

PFGE, and contain the distinct SCCmec types V and VI respectively.  BLAST analysis of 

blaI and blaR1 sequence reveals differing origins for beta-lactamase.  Sequence type 116 

bla sequence is identical to S. aureus plasmid pWBG748 (GenBank accession no. 

GQ915265); whereas ST68 bla sequence matches most closely with beta-lactamase-

containing S. aureus plasmid pWBG756 (GenBank accession no. GQ900472).  Both 

sequence types respond to oxacillin induction at one-hour post induction and maintain 

increased mecA expression at two and four hours.  However, mecA transcript copy 

number differs between the two sequence types by one to two logs at all time points 

and  at all oxacillin concentrations measured, suggesting that either the blaI/blaR1 of 

ST68 is more permissive than the blaI/blaR1 of ST116, or that additional factors are 

affecting mecA expression.   

With the singleton comparator strains (STs 73 and 116) removed from the analysis, the 

one to two log difference in mecA expression between the North American MRSP ST68s 

and European ST71s at all induced time points and at all levels of antibiotic exposure 

suggests there exists at least two divergent pathways to geographic clonal success with 
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regard to control of PBP2a metabolism.   Sequence types 68 and 71 are not genetically 

similar when analyzed with MLST and PFGE.77 However, sequence analysis revealed 

complete homology in all shared mec and bla regulatory elements – mec promoter, blaI 

and blaR1.  Sequence type 68 induces at one hour and maintains induction throughout 

the assay. Whereas ST71 does not induce in the presence of 0.01 µg/ml oxacillin and 

maintains essentially the same level of constitutive mecA expression at all time points 

measured.  Presumably BlaI and MecI compete for access to the mec operator in ST 71.   

This competition could account for the variability observed in the direction of mecA 

expression.  With increasing oxacillin concentrations ST 71 appears to have a biphasic 

response with increased mecA copy number at 0.08 µg/ml and then again at 1.0 µg/ml.  

This pattern should be further explored to determine whether BlaR1 and MecR1 differ 

in response to oxacillin concentration as well as time. 

As of yet there is no known overlap in the geographic areas affected by STs 68 and 71.  

These predominant sequence types emerging in North America and Europe with their 

distinct mec regulatory strategies are either the product of chance, or are a reflection of 

unique environmental pressures.  Sequence type 68 has only BlaI/BlaR1 regulation of 

mecA, has high constitutive mecA expression, and responds rapidly to small 

concentrations of oxacillin.  Sequence type 71 has both BlaI/BlaR1 and MecI/MecR1 

regulation of mecA, and has less constitutive and induced expression of mecA than 

ST68.  Because uncontrolled PBP2a production is deleterious86, it has been suggested 

that MRSA lineages require some level of bla regulatory control to stabilize the mecA 

gene in the absence of beta-lactam antibiotic exposure.85, 91 MecI/MecR1 alone is likely 

too restrictive of mecA expression to adequately respond to beta-lactam treatment.  

MecI/MecR1 coupled with BlaI/BlaR1 represents a middle ground with ST71 where a 

lineage could call on mecA expression if needed; this conformation may indicate that 

these isolates evolved in an environment in which antibiotic perturbations were less 

frequent.  The BlaI/BlaR1 of ST 68 represents the least stringent mecA control, and the 

apparent success of this lineage in the United States may indicate a constant need for 

some level of PBP2a, possibly due to presence of low-level beta-lactam in the 

environment in which they evolved. 
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Chapter 4: Conclusions and Application of Findings 
 

The molecular characterization study is now part of a collection of similar 

investigations33,45,46,77 that have firmly established ST71 and ST68 MRSP clonal 

expansion in Europe and US respectively. The follow-up study is the first to utilize 

comparative regulatory gene sequencing and gene expression in MRSP to compare the 

two regional clones with regard to differences in gene expression.  The approach used in 

measuring mecA copy number gave unique insight into not only fold change over 

baseline expression, but absolute copy number of mecA mRNA produced in MRSP.   

Sequence type 68 exhibited a significantly different mecA response relative to ST71 in 

quickness, duration, and number of transcripts when exposed to very small amounts of 

oxacillin.  This presumably translates to greater PBP2a in ST68 relative to ST71 within 

the first few hours of oxacillin exposure.  Earlier MRSA studies have not been able to 

detect a correlation between beta-lactam mean inhibitory concentration (phenotype) 

and cellular concentrations of PBP2a.96,97 We too observed that high and low mecA 

production response did not correspond to phenotype.  Isolates of ST68 and ST71 

exhibited a full range of phenotypic oxacillin resistance, from low-level measurements 

near 17 mm by Kirby-Bauer disc diffusion and 0.5 µg/ml by broth microdilution to high-

level resistance ≤ 10 mm and ≥ 4.0 µg/ml respecitively.77,98 This discrepancy between 

reproducible amounts of mecA transcript production (measured at one, two and four 

hours of oxacillin exposure) and variable disc diffusion phenotype (typically measured at 

24 hours of bacterial growth) suggests that expression analysis may be more indicative 

of in vivo MRSP response to antibiotic therapy than more traditional measurements.  

Clinicians select antibiotics and dosage based upon phenotypic measurements.  But 

these finding perhaps indicate more aggressive empirical beta-lactam protocols could be 

beneficial against clonal lineages like ST71 in Europe that demonstrate more stringent 

mecA regulatory control.  Further research would be required to bear this out. 

In 2003 Rosato et al performed a similar analysis of clinical MRSA isolates, sequencing 

regulatory genes and the mecA promoter, and performing mecA expression analysis.  

They reported a synergism in isolates with both MecI and BlaI, with lower mecA 

transcription than isolates containing either one alone.84 Our observations of MRSP in 

Chapter 3 conflict with the Rosato assessment – ST71 with both BlaI and MecI was 

intermediate to the high mecA production of ST68 and the low mecA production of 

MecI-only ST73.  The less-diversified MRSP genetic evolutionary picture may explain this 

difference.  Heterogeneous resistance is a strategy in many successful MRSA lineages, 
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whereby a small subset of bacterial cells in pure culture express high-level methicillin 

resistance in response to selection.  Multiple genetic factors (in addition to those 

examined in these studies) have been shown to affect mecA production in MRSA.  We 

have been unable to demonstrate heterogeneous methicillin resistance thus far in 

MRSP.  Perhaps this early less complicated stage of mecA regulatory evolution in MRSP 

can be exploited.  We’ve demonstrated that some level of beta-lactamase control likely 

contributes to the success of STs 68 and 71.  Our findings suggest that the membrane-

bound receptor BlaR1 as a prime target for therapeutic control of methicillin-resistant 

isolates.   

The most lasting aspect of this work will likely be the development of a highly 

reproducible MRSP mecA expression assay as an in vitro model to analyze novel 

antibiotic approaches.  New antibiotics from the traditional development pipelines are 

slow in coming and quick to select for resistance.  Our model can be used in conjunction 

with any approach that could hinder the production of mecA and reinstate the 

effectiveness of synthetic beta-lactam antibiotics.  The development of a BlaR1- and/or 

PBP2a-specific vaccine, the effect of non-cognate auto-inducing peptides, and the 

activity of synthetic antisense oligonucleotides on mecA regulatory genes could all 

readily be assessed using the mecA expression assay.   

MRSP was first identified in 1999.5 UTCVM has been at the forefront of research 

institutions in tracking the proliferation of this emerging pathogen from phenotypic, 

molecular, and clinical perspectives.  At the beginning of this project in 2007 the first 

publication hinting at regional clonality had just been published.33 In the time since, this 

dissertation project has contributed to the MRSP knowledge-base with the identification 

of ST68 as the regional clone associated with our collection and the United States, and 

has brought to light the significant differences in mecA expression strategies between 

the European and American regional clones.  
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